Project Abstracts for PhD Student Recruitment AY2025/26

Department of Mathematics

Project title	Statistical learning by structured neural networks	
Research Clusters	 □Creative Media/Practice □ Health and Drug Discovery ✓ Data Analytics and Artificial Intelligence in X □ Humanities and Cultures 	
Keywords	Statistical machine learning, deep learning theory, structured neural networks, optimization, high- dimensional data analysis	
Project abstract	This project explores statistical learning through the lens of structured neural networks, aiming to enhance model interpretability and performance. By integrating principles from statistical theory and neural network design, we will investigate how structured architectures can effectively capture complex data patterns while maintaining computational efficiency. The research will focus on developing novel algorithms that leverage these structures for improved learning outcomes in various applications. Ultimately, this project seeks to advance our understanding of the interplay between statistical learning and neural network architecture, paving the way for more robust and interpretable Al systems.	Email address: junfan@hkbu.edu.hk Learn more: https://www.math.hkbu.edu.hk/~junfan/

Project title	Optimal Preconditioning for Structured Sy Problems	stems with Applications to PDE
Keywords	Toeplitz systems, circulant matrices, Tau matrices, preconditioning, MINRES	3000 Alendres and L
Project abstract	This project focuses on developing optimal preconditioning strategies for structured systems, particularly those arising in partial differential equations (PDEs). Preconditioning improves the efficiency of iterative solvers, particularly for large-scale systems encountered in scientific computing. By leveraging the specific structure of PDE problems, we aim to design preconditioners that enhance convergence rates while reducing computational costs. Applications in image processing, optimal pricing, optimal control problems, and other areas will be explored, demonstrating improved performance across a range of complex, real-world simulations.	Email address: seanyshon@hkbu.edu.hk Learn more: https://sites.google.com/view/hkbu-seanyshon/about

Project title	Mathematical models and analysis of a poroelastic approach for stimulus-responsive smart hydrogels	
Research Clusters	 □ Creative Media/Practice ✓ Health and Drug Discovery □ Data Analytics and Artificial Intelligence in X □ Humanities and Cultures 	
Keywords	Mathematical modelling, PDE analysis, Hydrogels, Poroelastic material, Long time behavior	(ES)
Project abstract	Hydrogels are networks of polymer chains with the ability to absorb and hold large amounts of water. They have traditionally appeared in commercial hygiene and medical products, such as contact lenses and sanitary pads, as well as in biomedical applications like tissue engineering and wound healing. In recent years, they have become one of the next-generation smart materials and are sensitive to environmental changes and can alter their structures accordingly. We plan to develop new mathematical models for stimulus-responsive smart hydrogels. Then, we perform a rigorous mathematical analysis on the solvability of the new models and explore their equilibrium states.	Dr LAM Kei Fong Email address: akflam@hkbu.edu.hk Learn more: https://andrewkflam.github.io/

Project title	Mathematical Model Guided Deep Learning Methods for Image	
	Processing	
Research Clusters	 □ Creative Media/Practice □ Health and Drug Discovery ✓ Data Analytics and Artificial Intelligence in X □ Humanities and Cultures 	
Keywords	Deep neural networks, mathematical models, image processing, operator-splitting methods	
Project abstract	Deep neural networks have demonstrated great successes in image processing. However, a lot of network architectures are empirically designed. Mathematical explanations of their successes are missing. We will incorporate deep neural network with mathematical models to design new deep learning methods with mathematical explanations. We expect that our methods will leverage the strengths of both deep learning methods and mathematical models, and outperform existing state- of-the-art methods.	<i>Dr LIU Hao</i> <i>Email address:</i> <i>haoliu@hkbu.edu.hk</i> <i>Learn more:</i> <i>https://www.math.hkbu.edu.hk/~haoliu/</i>

Project title	Sparse polynomial optimization and its applications	
Keywords	Polynomial optimization, sparsity, Moment-SOS relaxations, tight relaxation, Nash equilibrium	(a distant for s
Project abstract	In this project, we investigate the theory and applications of sparse polynomial optimization, which are optimization problems given by polynomial functions which only have a small subset of variables. We mainly concern the tightness for the sparse Moment-SOS hierarchy of semidefinite relaxations for solving sparse polynomial optimization problems. Besides that, we are interested in applying related tools to solve difficult problems given by sparse polynomials, such as sparse Nash equilibrium problems of polynomials.	Email address: xdtang@hkbu.edu.hk Learn more: https://www.math.hkbu.edu.hk/~xdtang/

Project title	ct title Asymmetric classification and its extensions	
Research Clusters	 □ Creative Media/Practice □ Health and Drug Discovery ✓ Data Analytics and Artificial Intelligence in X □ Humanities and Cultures 	
Keywords	asymmetric classification, statistical learning	
Project abstract	Classification is a widely employed technique in various fields, with traditional binary classification methods focusing on minimizing the combined rates of Type I errors (false positives) and Type II errors (false negatives). However, the relative importance of these errors often varies depending on the specific application. Consequently, there is a growing need for asymmetric control mechanisms that address the differing	Dr YAO Shunan
	significance of Type I and Type II errors, allowing for more tailored and effective classification outcomes. This study will focus on the methodological advancements of asymmetric classification, derive its statistical properties, and explore its real-world applications. Moreover, I will conduct research on combining asymmetric classification with other statistics framework and techniques to address more specialized areas and enhance overall performance.	Email address: yaoshunan@hkbu.edu.hk Learn more: https://www.math.hkbu.edu.hk/v1/ people/profile/YAO,%20Shunan